Even and Odd Functions

Even function: when \(f(-x) = f(x) \) a function is even.

Odd function: when \(f(-x) = -f(x) \) a function is odd.

What does that mean?

\(f(x) = x^2 + 2x + 2 \); solve for \(f(0) \)

We would then plug the 0 in for the \(x' \)s in the \(f(x) \) equation: \(0 + 0 + 2 = 2 \), so \(f(0) = 2 \)

Now let’s apply that to the even/odd function information.

\(f(x) = x^2 + 2x + 2 \), let’s plug in \((-x)\), as listed for the even function, for the \(x' \)s and see what we get:

\[(-x)^2 + 2(-x) + 2 = x^2 - 2x + 2 \]

Evaluate the answer

Even evaluation, does \(f(-x) = f(x) \)?

\[x^2 - 2x + 2 \neq x^2 + 2x + 2 \]

We have two different symbols so this equation is not an even function.

Odd evaluation, does \(f(-x) = -f(x) \)?

We know that \(f(-x) \) is \(x^2 - 2x + 2 \).

Now let’s look at the other side of the evaluation.

\(-f(x)\) means that the entire function needs to be multiplied by -1.

When you see \(-f(x)\) for this example, it means:

\[-(x^2 + 2x + 2) = -x^2 - 2x - 2 \]

When we see \(-f(x)\) it means that we reverse each symbol in our equation. **It’s an opposite!**

So, does \(f(-x) = -f(x) \)

\[x^2 - 2x + 2 \neq -x^2 - 2x - 2 \]

We have different symbols again, so this equation is **not** an odd function.