Introduction to Presenting Statistics in APA Style Format

Zin Htway, Ph.D., MBA, CT (ASCP, IAC)
Zin Htway, Ph.D., MBA, CT (ASCP, IAC)
Introduction to presenting statistics in APA style format.

• The purpose of the statistical write-up is to present the statistical analysis to the reader in a succinct, comprehensive, and digestible form.
Clarity of your Research Study

- Research question(s)
- Null hypothesis
- Alternative hypothesis
- Dependent variable(s)
- Independent variable(s)
- Groups
- Sample size or group sizes
- Test statistic(s) applied to answer the research question(s)
- Effect size
- Level of precision (Alpha)
- Power (1 – Beta)
Components to include in the write-up

- Research question
- Test statistic
- Dependent variable or Groups
- Independent variable
- Statistical Assumptions
- Sample size (n = xx)
- Descriptive statistics of variables
- Variables found to be statistically significant
- Variable found to be not statistically significant
- Level of significance (p-value)
- Distribution associated to statistical significance (i.e. T-score, F-value)
- Point estimate (i.e. Mean, Beta)
- Population estimate (i.e. 95% C.I.)
- Interpretation of statistical analysis
- Hypothesis retained (RQ answered)
Results of the One-sample t-test showed that the mean albumin level of Hispanic dialysis patients \([Mean = 3.03, SD = .96]\) was statistically significant at the .05 level of significance \([t = -43.74, df = 814, p < .001]\) from the \([Test \ value = 4.5]\). The \([Mean \ difference = -1.47, 95\% CI (-1.54, -1.41)]\). The null hypothesis which suggested that there was no significant difference in the mean albumin level of Hispanic dialysis patients is rejected.
APA style write-up of Independent Samples t-Test

Results of the independent samples t-test showed that the mean heart rate after 15 minutes between patients taking Drug B ($M = 110.87$, $SD = 21.95$, $n = 15$) and patients taking Drug C ($M = 144.60$, $SD = 7.19$, $n = 15$) was statistically significant at the .05 level of significance ($t(28) = -5.56$, $df = 28$, $p < .05$). On average, heart rate after 15 minutes of patients taking Drug C was higher than those taking Drug B. The null hypothesis which suggested that there was no significant difference in the mean heart rate after 15 minutes between patients taking Drug B and those taking Drug C is rejected.
APA style write-up of Multiple Linear Regression

To approach [Research Question], a multiple linear regression analysis was conducted to evaluate the prediction of [Dependent Variable] from [IV1, IV2, IV3, etc.]. The results of the multiple linear regression analysis revealed [IV4, and IV5] not to be statistically significant predictors to the model (p > .05). However, the results of the multiple linear regression analysis revealed a statistically significant association between [IV1, IV2, and IV3]. Controlling for [IV2 and IV3], the regression coefficient \(B = XXX \), 95% C.I. (yyy, zzz) \(p < .05 \) associated with [IV1] suggests that with each additional [IV1], the [DV] increases by approximately [WWW]. The R2 value of [0.18] associated with this regression model suggests that the [IV1] accounts for [18%] of the variation in [DV], which means that [82%] of the variation in income cannot be explained by [IV1] alone. The confidence interval associated with the regression analysis does not contain 0, which means the null hypothesis, there is no association between number of [IV1] and [DV], can be rejected. Similar results were found for [IV2].

Controlling for [IV1 and IV3], the regression coefficient \(B = XXX \), 95% C.I. (yyy, zzz) \(p < .05 \) associated with [IV2] suggests that with each additional [IV2], the [DV] increases by approximately [WWW]. The R2 value of [0.25] associated with this regression model suggests that the [IV2] accounts for [25%] of the variation in [DV], which means that [75%] of the variation in income cannot be explained by [IV2] alone. The confidence interval associated with the regression analysis does not contain 0, which means the null hypothesis, there is no association between number of [IV2] and [DV], can be rejected. Similar results were found for [IV3].

Controlling for [IV1 and IV2], the regression coefficient \(B = XXX \), 95% C.I. (yyy, zzz) \(p < .05 \) associated with [IV3] suggests that with each additional [IV3], the [DV] increases by approximately [WWW]. The R2 value of [0.35] associated with this regression model suggests that the [IV3] accounts for [35%] of the variation in [DV], which means that [65%] of the variation in income cannot be explained by [IV3] alone. The confidence interval associated with the regression analysis does not contain 0, which means the null hypothesis, there is no association between number of [IV3] and [DV], can be rejected.
APA write-up for Simple Logistic Regression

- A logistic regression analysis to investigate if there is a relationship between Age and Retirement Planning was conducted. The predictor variable, Age, was tested a priori to verify there was no violation of the assumption of the linearity of the logit. The predictor variable, Age, in the logistic regression analysis was found to contribute to the model. The unstandardized Beta weight for the Constant; $B = (-2.503)$, $SE = 0.534$, $Wald = 21.948$, $p < .001$. The unstandardized Beta weight for the predictor variable: $B = 0.296$, $SE = 0.036$, $Wald = 67.892$, $p < .001$. The estimated odds ratio favored an increase of nearly 35% [$Exp (B) = 1.345$, 95% CI (1.254, 1.443)] for Retirement Planning for every one unit increase of Age.
Questions ???
More questions? Stay Informed!

Current Walden students, e-mail our tutoring team at:

ASCTutoring@Waldenu.edu

Subscribe to our Facebook & Twitter channels to keep up-to-date on new information, ask questions and share your knowledge.

Subscribe to our YouTube channel (free!) to have instant access to new tutorials and webinar archives.

Visit our website for tutorials, event schedules, tutoring services, courses and workshops.