Test of Mean Differences Series Part 5: One-way ANCOVA

Zin Htway, Ph.D., MBA, CT (ASCP, IAC)
Zin Htway, Ph.D., MBA, CT (ASCP, IAC)
Introduction to the One-way ANCOVA

• Analysis of covariance is a multivariate statistical method in which the dependent variable is a quantitative variable and the independent variables are a mixture of nominal variables and quantitative variables (Sage Publication).

• Analysis of covariance is used to test the main and interaction effects of categorical variables on a continuous dependent variable, controlling for the effects of selected other continuous variables, which co-vary with the dependent. The control variables are called the "covariates" (lehigh.edu).

• The one-way ANCOVA is used to determine whether there are any significant differences between two or more independent (unrelated) groups on a dependent variable. However, whereas the ANOVA looks for differences in the group means, the ANCOVA looks for differences in adjusted means (Laerd Statistics).
Examples appropriate for the One-way ANCOVA

• In experimental designs, to control for factors which cannot be randomized but which can be measured on an interval scale.

• In observational designs, to remove the effects of variables which modify the relationship of the categorical independents to the interval dependent.

• In regression models, to fit regressions where there are both categorical and interval independents.
Statistical Assumptions of the One-way ANCOVA

- Dependent variable and covariate variable(s) should be measured on a continuous scale.
- Independent variable should consist of two or more categorical, independent groups.
- Independence of observations.
- No significant outliers in the differences between the two related groups.
- Residuals should be approximately normally distributed for each category of the independent variable.
- There needs to be homogeneity of variances.
- Covariate should be linearly related to the dependent variable at each level of the independent variable.
- Homoscedasticity of the standardized residuals.
- Homogeneity of regression slopes.
Research Scenario

A research is conducting a pilot study to determine if an oral treatment intervention will have an effect on the oral condition of cancer patients.
Research question No. 1

Does the treatment intervention, aloe juice, predict the oral condition of cancer patients?
Research question No. 2

Is initial cancer stage a contributing predictor of oral condition of cancer patients receiving aloe juice treatment?
SPSS > Analyze > General Linear Model > Univariate
Dependent List: Week 6 oral condition (TOTAL CW6)
Fixed Factor: treatment group [TRT]
Descriptive
Dependent Variable: Week 6 oral condition

<table>
<thead>
<tr>
<th>treatment group</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>9.93</td>
<td>3.970</td>
<td>14</td>
</tr>
<tr>
<td>aloe juice</td>
<td>8.78</td>
<td>2.635</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>9.48</td>
<td>3.489</td>
<td>23</td>
</tr>
</tbody>
</table>
Tests of Between-Subjects Effects

Dependent Variable: Week 6 oral condition

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>7.255a</td>
<td>1</td>
<td>7.255</td>
<td>.585</td>
<td>.453</td>
</tr>
<tr>
<td>Intercept</td>
<td>1916.994</td>
<td>1</td>
<td>1916.994</td>
<td>154.546</td>
<td>.000</td>
</tr>
<tr>
<td>TRT</td>
<td>7.255</td>
<td>1</td>
<td>7.255</td>
<td>.585</td>
<td>.453</td>
</tr>
<tr>
<td>Error</td>
<td>260.484</td>
<td>21</td>
<td>12.404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2334.000</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>267.739</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .027 (Adjusted R Squared = -.019)
SPSS > Analyze > General Linear Model > Univariate
Dependent List: Week 6 oral condition (TOTAL CW6)
Fixed Factor: treatment group [TRT]
Covariate(s): initial cancer stage, coded 1 through 4 [STAGE]
Options <click>
Descriptive statistics <click>
Continue <click>, OK <click>
Tests of Between-Subjects Effects
Dependent Variable: Week 6 oral condition

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>80.146(^a)</td>
<td>2</td>
<td>40.073</td>
<td>4.272</td>
<td>.029</td>
</tr>
<tr>
<td>Intercept</td>
<td>233.270</td>
<td>1</td>
<td>233.270</td>
<td>24.870</td>
<td>.000</td>
</tr>
<tr>
<td>STAGE</td>
<td>72.891</td>
<td>1</td>
<td>72.891</td>
<td>7.771</td>
<td>.011</td>
</tr>
<tr>
<td>TRT</td>
<td>17.388</td>
<td>1</td>
<td>17.388</td>
<td>1.854</td>
<td>.188</td>
</tr>
<tr>
<td>Error</td>
<td>187.593</td>
<td>20</td>
<td>9.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2334.000</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>267.739</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) R Squared = .299 (Adjusted R Squared = .229)
An ANCOVA analysis was conducted to investigate if the pilot study of *aloe juice treatment* would improve the oral condition of cancer patients after week 6. The oral condition of the Placebo group \([N = 14, \text{ mean } = 9.93]\) was higher than the Treatment group \([N = 9, \text{ mean } = 8.78]\) indicating an improvement of oral condition. However, the between-subjects effects was not significant \(p = .453, R\text{-squared} = .027\) at the .05 level for this pilot study. Including the covariate, *Initial cancer stage*, into the analysis improved the model \(p = .181, R\text{-squared} = .299\). Even though the addition of *Initial cancer stage* is not statistically significant in the model, there is improvement of the omnibus statistical significance and R-squared value indicating support for further studies.
Questions ???
More questions? Stay Informed!

Current Walden students, e-mail our tutoring team at: ASCtutoring@Waldenu.edu

Subscribe to our Facebook & Twitter channels to keep up-to-date on new information, ask questions and share your knowledge.

Subscribe to our YouTube channel (free!) to have instant access to new tutorials and webinar archives.

Visit our website for tutorials, event schedules, tutoring services, courses and workshops.